Search results for "Mapping class group. Automorphisms of free groups. Ordering. Ends of groups"

showing 1 items of 1 documents

Embedding mapping class groups of orientable surfaces with one boundary component

2012

We denote by $S_{g,b,p}$ an orientable surface of genus $g$ with $b$ boundary components and $p$ punctures. We construct homomorphisms from the mapping class groups of $S_{g,1,p}$ to the mapping class groups of $S_{g',1,(b-1)}$, where $b\geq 1$. These homomorphisms are constructed from branched or unbranched covers of $S_{g,1,0}$ with some properties. Our main result is that these homomorphisms are injective. For unbranched covers, this construction was introduced by McCarthy and Ivanov~\cite{IM}. They proved that the homomorphisms are injective. A particular cases of our embeddings is a theorem of Birman and Hilden that embeds the braid group on $p$ strands into the mapping class group of …

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Mapping class group. Automorphisms of free groups. Ordering. Ends of groupsMapping class group. Automorphisms of free groups. Ordering. Ends of groups.[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Primary: 20F34; Secondary: 20E05 20E36 57M99.[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]
researchProduct